Mengenal release terbaru dari VMware vSphere versi 6.5

Pada bulan October 2016 kemarin VMware mengenalkan vSphere seri terbaru yaitu versi 6.5. Pada tanggal 16 November 2016 software tersebut sudah bisa di-download publicly. Well, seperti biasa banyak sekali enhancements yang dilakukan pada software virtualisasi ini pada setiap versi terbarunya yang sangat sulit dikejar oleh competitors. Beberapa diantaranya adalah:

  1. Sangat mudah dan simple untuk digunakan (ex: enhancement dari vCenter)
  2. Fitur security yang “Built-In” langsung dari vSphere (ex: fitur baru VM & vMotion Encryption)
  3. Platform aplikasi yang universal (ex: optimise untuk vSphere Integrated Container)
  4. Operasi yang jauh lebih reliable (ex: enhancement dari HA, DRS, vROPS)

Para posting selanjutnya saya akan drill down lebih mendalam dan screenshots dari tampilan versi terbaru ini langsung dari my personal lab environment.

Kind Regards,
Doddi Priyambodo

Oracle Database Standard Edition 2 Compare to other Editions

If you read this blog, I also have specific part talking about Oracle Database. Several years ago actually I was also an Oracle Database Administrator for Oracle 9i, 10gR2, and 11gR2 doing operational such as architecture design, deployment, performance tuning, backup, replication, clustering, and PL/SQL programming. But, currently I found cloud technology is more interesting than on-premise database technology. So, that’s one of the reason why I move my focus to Cloud Technology (read, VMware). Anyway, now the current version of Oracle Database available is (12cR1).

In this post I would like to elaborate more regarding new licensing scheme from Oracle since version came. The introduction of Oracle Standard Edition 2 version. This is a brief explanation from Oracle’s license document:

Oracle Database Standard Edition 2 may only be licensed on servers that have a maximum capacity of 2 sockets. When used with Oracle Real Application Clusters, Oracle Database Standard Edition 2 may only be licensed on a maximum of 2 one-socket servers. In addition, notwithstanding any provision in Your Oracle license agreement to the contrary, each Oracle Database Standard Edition 2 database may use a maximum of 16 CPU threads at any time. When used with Oracle Real Application Clusters, each Oracle Database Standard Edition 2 database may use a maximum of 8 CPU threads per instance at any time. The minimums when licensing by Named User Plus (NUP) metric are 10 NUP licenses per server.

These are some notes for the customer after reading the statement above, and other notes:

  • Oracle Database Standard Edition 2 (SE2) will replace SE and SE1 from version
  • SE2 will have a limitation of maximum 2 socket systems and a total of 16 CPU threads*
    • *note not cores!
    • SE2 is hard coded in Resource Manager to use no more than 16 CPU threads.
  • RAC is till included with SE2 but is restricted to 2 sockets across the cluster. Therefore, each server must be single socket.
  • SE One and SE will no longer be available to purchase from 10th November 2015.
  • If you need to purchase additional DB SE and SE One Licenses you must purchase SE2 instead and install the version of 11g as required from here. Note – you must still comply with the license rules for SE2.
  • Oracle is offering a FREE license migration from SE One* and SE to SE2.
    • *SE One customers will have to pay a 20% increase in support as part of the migration.
    • SE customers face no other cost increases for license or support, subject to Named User minimums being met.
  • Named user minimums for SE2 are now 10 per server
  • was the last SE and SE1 release
  • SE and SE1 customers will have 6 months of patching support once SE2 is released with quarterly patches still being available in Oct 2015 and Jan 2016.

Now, compare to other versions. These are the features that is available in SE2 compare to Oracle Database Enterprise Edition:

Continue reading Oracle Database Standard Edition 2 Compare to other Editions

Download VMware Products Datasheet (Bundle and per-Item)

Initially, I don’t know why I am posting this article because this will make some redundancies to other contents in the internet. Hmmm, well maybe because some customers always ask me about the data sheets of VMware products, then I think it will be easier if I just tell them about this post rather than they google it and download them one by one.

VMware Bundle Components Datasheet:

– VMware vCloud Suite Datasheet : (Download Here)
– VMware vRealize Suite Datasheet : (Download Here)
– VMware vCloud NFV : (Download Here)

VMware per-product Components Datasheet:

– VMware vSphere : (Download Here)
– VMware vCenter : (Download Here)
– VMware vCloud Director for SP : (Download Here)
– VMware vRealize Automation : (Download Here)
– VMware vRealize Operations : (Download Here)
– VMware vRealize Business for Cloud  : (Download Here)
– VMware Site Recovery Manager : (Download Here)
– VMware NSX : (Download Here)
– VMware vSAN: (Download Here)

Notes: there are still other offers from VMware such as Cloud Foundation, vSphere Integrated Containers, vRealize Code Stream, vSphere Integrated Openstack, vRealize Log Insight, vRealize Network Insight, Workspace One, Horizon, Airwatch, etc (… please refer to for more detail).


After reading this post, now maybe some of you just know that VMware is not just vSphere ESXi + vCenter right? 🙂

Yeah, it’s the Software-Defined Data Center

VMware, a global leader in cloud infrastructure and business mobility, accelerates our customers’ digital transformation journey by enabling enterprises to master a software-defined approach to business and IT. With VMware solutions, organizations are improving business agility by modernizing data centers, driving innovation with modern data and apps, creating exceptional experiences by mobilizing everything, and safeguarding customer trust with a defense-in-depth approach to cybersecurity.


Kind Regards,
Doddi Priyambodo

Explanation about How CPU Limit and CPU Reservation can Slow your VM (if you don’t do a proper sizing and analysis)

In this post, I would like to share about CPU limit and CPU reservation configuration in vSphere ESXi virtualisation technology.

Actually those features are great (since the configuration also available in vCloud Director (*it will call the configuration in vCenter)). Those features are great if you really know and already consider on how to use it properly. For example, if you would like to use CPU reservation please make sure that you are not running those VMs in a fully contention/overcommitment environment. For CPU limit, if you have application that is always consume 100% of CPU even though you always give more CPU to the VM – then you can use Limit configuration to limit the usage of the CPU by that application (but, for me the Best Way is ask your Developer to Fix the Application!).

Okay, let’s talk more about CPU Limit.

Duncan Epping and Frank Denneman (both are the most respectable VMware blogger), once said that: “Look at a vCPU limit as a restriction within a specific time frame. When a time frame consists of 2000 units and a limit has been applied of 300 units it will take a full pass, so 300 “active” + 1700 units of waiting before it is scheduled again.”

So, applying a limit on a vCPU will slow your VM down no matter what. Even if there are no other VMs running on that 4 socket quad core host.

Next, let’s talk more about CPU Reservation.

Josh Odgers (another virtualisation blogger) also explained that CPU reservation “reserves” CPU resources measured in Mhz, but this has nothing to do with the CPU scheduler. So setting a reservation will help improve performance for the VM you set it on, but will not “solve” CPU ready issues caused by “oversized” VMs, or by too high an overcommitment ratio of CPU resources.

The configuration of Limit and Reservation are done outside the Guest OS, so your Operating System (Windows/Linux/etc) or your Application (Java/.NET/C/etc) do not know that. Your application will ask the resource based on the allocated CPU to that VM.
You should minimize the use of Limit and Reservation as it makes the operation more complex.


Better use the feature of default VMkernel which already got a great scheduler functionality that will take fairness into account. Actually, you can use CPU share configuration if you want to prioritise the VM other than others.

But, the most important thing is: “Please Bro…, Right Size Your VM!”


Kind Regards,
Doddi Priyambodo


Docker Version Manager (DVM) to easily Move between Docker Client Version

Another break-time post from the continuous tutorial about cloud native applications 🙂

Sometimes when we are working in container environment, we found server’s version is not the same as client’s version. So we can not connect to the server. To easily solve this issue, we should install dvm (docker version manager) so we can easily move from one environment in our client to another.

These are the steps:

$ curl -sL | sh

$ source /Users/doddipriyambodo/.dvm/
#Usages of the commands:

$ dvm ls --> see the version in your client
$ dvm ls-remote --> see what version available to install
$ dmv install 1.12.3 --> install the client
$ dvm use 1.12.3 --> use the specified client
$ dvm deactivate --> uninstall the client


Kind Regards,
Doddi Priyambodo

Can Not Connect / Error Connecting to iSCSI SAN

Sorry to disturb the tutorial about cloud native application, just a quick note about the troubleshooting.

I found an issue today regarding my iSCSI connection to the datastore. All hosts are all having this error when trying to connect to the SAN. This is because I played with my Lab a lot! and tried to remove and add the NIC of my Fusion and also my Host.

Error messages looks something like this:

Call "IscsiManager.QueryBoundVnics" for object "iscsiManager" on ESXi / vCenter failed.

The problem is solved with the following:

1. Disabled the iSCSI software adapter (backup your iqn and settings)
2. Navigate to /etc/vmware/vmkiscsid/ of the host and backup the files
3. Delete the contents in /etc/vmware/vmkiscsid/
4. Reboot the host
5. Create a new software iscsi adapter, write the IQN with the old one we backup earlier
6. Add iscsi port bindings and targets.
7. DONE.


Kind Regards,
Doddi Priyambodo

Running your Docker in Production Environment using VMware vSphere Integrated Containers – (Part 2)

Following our tutorial, now we will continue to do the installation and configuration for those components.

So, rephrasing previous blog post. By utilising vSphere Integrated Containers, now Developers can use their docker commands to manage the development environments, also functionalities are enriched with specific container management portal (VMware Admiral) and enterprise features container registry (VMware Harbor). System administrator can still use their favourite management tool to manage the infrastructure, such as vCenter and also vRealize Operations plus Log Insight to manage the virtual infrastructure in a whole holistic view. Shown in the diagram below:

A traditional container environment use the host/server to handle several containers. Docker has the ability to import images into the host, but the resource is tied to that host. The challenge is sometime that host has a very limited set of resources. To expand resource on that host, then we need to shutdown the host and then the containers. Then we need to add resource for that physical/virtual machine before more containers can be powered deployed. Another challenge is the container is not portable as it can not be moved to another host since it is very tight to the OS kernel of the container host.

Another concerns other than resources, already explained in my earlier post regarding some enterprise features if we would like to run docker in production environment such as security, manageability, availability, diagnosis and monitoring, high availability, disaster recovery, etc. VIC (vSphere Integrated Containers) can give the solution for all those concerns by using resource pool as the container host and virtual machines as the containers. Plus with new features of vSphere 6 about Instant Clone now VIC can deliver “instant on” container experience alongside the security, portability, and isolation of Virtual Machine. Adding extra hosts in the resource pool to dynamically increase infra resources, initiate live migration/vMotion, auto placement/Distributed Resource Scheduler, dedicated placement/affinity, self healing/High Availability, QoS/weight, quota/limit, guarantee/reservation, etc will add a lot of benefits to the docker environment.

So, these are our steps to prepare the environments for vSphere Integrated Containers (VIC).

  1. Installation and configuration of vSphere Integrated Containers
  2. Installation and configuration of Harbor
  3. Installation and configuration of Admiral

So, let’s start the tutorial now.

Checking the Virtual Infrastructure Environments

  • I am running my virtualisation infrastructure in my Mac laptop using VMware Fusion Professional 8.5.1.
  • Currently I am using vSphere ESXi Enterprise Plus version 6 update 2, and vCenter Standard version 6 update 2.
  • I have NFS storage as my centralised storage, NTP, DNS and DHCP also configured in another VM.


Installation of vSphere Integrated Containers (VIC)

There are two approach to install VIC. This is the first one: (I use this to install on my laptop)

  1. Download the installation source from github =
  2. You will download the vic from the pull command using git. First install the git components from here =
  3. Run this command = $ git clone
  4. After downloaded go to the directory = $ cd vic
  5. Now, build the binaries using this command =
    docker run -v $(pwd):/go/src/ -w /go/src/ golang make all

OR, you can do the second approach: (I use this to install on my VM)

  1. Download binary file from here =
  2. In this personal lab, I am using this binary =
  3. Download that binary to the Virtual Machine that you will be used for VIC Management Host.
  4. Extract the file using = $ tar -zxvf vic_6511.tar.gz.  NOTE:You will see the latest build as shown here. The build number “6511” will be different as this is an active project and new builds are uploaded constantly.

Okay, you already installed the installer now. In those steps above, there are three primary components generated by a full build, found in the ./bin directory by defaul). The make targets used are the following:

  1. vic-machine – make vic-machine
  2. appliance.iso – make appliance
  3. bootstrap.iso – make bootstrap

Okay, after this we will Deploy our Virtual Container Host in VMware environments (I am using vCenter with ESXi as explained earlier). The installation can run on dedicated ESXi host too (without vCenter) if needed.

Now, continue to create the Virtual Container Host in the vCenter. Since I am using Mac, I will use command prompt for mac.

$ ./vic-machine-darwin create --target --compute-resource --user administrator@vsphere.local --password VMware1! --image-store ds_fusion_01 --no-tlsverify --name virtualcontainerhost01 --bridge-network dvPgContainer01 --force


After that command above, let’s check the condition of our virtual infrastructure from vCenter now. Currently we will see that we have a new resource pool as the virtual container host, and a vm as an endpoint vm as a target of the container host.


Okay, installation is completed. Let’s try to deploy a docker machine into the VIC now.

docker -H --tls info


After that, let’s do the pull and run command for the docker as normal operation same as my previous posts.
$ docker -H --tls \
--tlscert='./docker-appliance-cert.pem' \
--tlskey='./docker-appliance-key.pem' pull vmwarecna/nginx

$ docker -H --tls \
--tlscert='./docker-appliance-cert.pem' \
--tlskey='./docker-appliance-key.pem' run -d -p 80:80 vmwarecna/nginx

Note: for production, we must use the *.pem key to connect to the environment. Since this is my development environment, so I will skip that.


Okay, now finally… this is a video to explain the operational of vSphere Integrated Container, VMware Admiral, and VMware Harbor (I already explained about Admiral and Harbor in my previous blog post in here):


Kind Regards,
Doddi Priyambodo


Running your Docker in Production Environment using VMware vSphere Integrated Containers – (Part 1)

In this tutorial, after explaining about running Docker in my Mac. Now, it’s time to move those dockers on your laptop to production environment. In VMware, we will utilise vSphere ESXi as the production grade virtualisation technology as the foundation of the infrastructure.

In production environment, lot of things need to be considered. From availability, manageability, performance, reliability, scalability, security (AMPRSS). This AMPRSS considerations can be easily achieved by implementing docker container from your development environment (laptop) to the production environment (vSphere ESXi). One of the concern of docker technology is the containers share the same kernel and are therefore less isolated than real VMs. A bug in the kernel affects every container.

vSphere Integrated Containers Engine will allow developers familiar with Docker to develop in containers and deploy them alongside traditional VM-based workloads on vSphere clusters, and allowing for these workloads to be managed through the vSphere UI in a way familiar to existing vSphere admins.

Docker itself is far less capable than actual hypervisor. It doesn’t come with HA, live migration, hardware virtualization security, etc. VIC (VMware Integrated Containers) brings the container paradigm directly to the hypervisor, allowing you to deploy containers as first-class citizens. The net result is that containers inherit all of the benefits of VMs, because they are VMs. The Docker image, once instantiated, becomes a VM inside vSphere. This solves security as well as operational concerns at the same time.

But these are NOT traditional VMs that require for example 2TB and take 2 minutes to boot. These are usually as big as the Docker image itself and take a few seconds to instantiate. They boot from a minimal ISO which contains a stripped-out Linux kernel (based on Photon OS), and the container images and volumes are attached as disks.

The ContainerVMs are provisioned into a “Virtual Container Host” which is just like a Swarm cluster, but implemented as logical distributed capacity in a vSphere Resource Pool. You don’t need to add or remove physical nodes to increase or decrease the VCH capacity, you simply re-configure its resource limits and let vSphere clustering and DRS (Distributed Resource Scheduler) handle the details.

The biggest benefit of VIC is that it helps to draw a clear line between the infrastructure provider (IT admin) and the consumer (developer/ops). The consumer wins because they don’t have deal with managing container hosts, patching, configuring, etc. The provider wins because they can leverage the operational model they are already using today (including NSX and VSAN).

Developers will continue to develop dockers and IT admin will keep managing VMs. The best of both worlds.

It also can be combined with other enterprise tool to manage the Enterprise environment, such as vRealize Operations, vRealize Log Insight, Virtual SAN, VMware NSX, vRealize Automations.

In this post, I will utilise these technologies from VMware:

  • vSphere ESXi 6 U2 as the number one, well-known and stable production grade Virtualisation Technology.
  • vCenter 6 U2 as the Virtualisation central management and operation tool.
  • vSphere Integrated Containers as the Enterprise Production Ready container runtime for vSphere, allowing developers familiar with Docker to develop in containers and deploy them alongside traditional VM-based workloads on vSphere clusters. Download from here: The vSphere Integrated Containers Engine
  • VMware Admiral as the Container Management platform for deploying and managing container based applications. Provides a UI for developers and app teams to provision and manage containers, including retrieving stats and info about container instances. Cloud administrators will be able to manage container hosts and apply governance to its usage, including capacity quotas and approval workflows. Download from here: Harbor
  • VMware Harbor as an enterprise-class registry server that stores and distributes Docker images. Have a UI and functionalities usually required by an enterprise, such as security, identity, replication, and management. Download from here: Admiral

This is the diagram block for those components:

As you can see in the diagram above vSphere Integrated Containers is comprised of three main components, all of which are available as open source on github. With these three capabilities, vSphere Integrated Containers will enable VMware customers to deliver a production-ready container solution to their developers and app teams.


*to be continued in part 2.

Kind Regards,
Doddi Priyambodo

Running your First Cloud Native Applications using Docker Container in Mac

As previous post, I will elaborate about Cloud Native Applications. But before that, I will post some basic concepts about Docker as the Container technology for Cloud Native Applications approach.

Docker is an open platform for developing, shipping, and running applications. Docker enables you to separate your applications from your infrastructure so you can deliver software quickly. With Docker, you can manage your infrastructure in the same ways you manage your applications. By taking advantage of Docker’s methodologies for shipping, testing, and deploying code quickly, you can significantly reduce the delay between writing code and running it in production.

If you are still confused about description of Docker, Microservices, Cloud Native Applications technology means. You can read it in here: 

In this post, I will start with the basic on how to run your first application in Docker that will be provisioned in your Mac laptop. Then, I will do that also in vSphere Integrated Container and also VMware Photon Platform.

Let’s Start the first Chapter: INSTALLATION 

  1. Download your Docker Engine from this URL (stable version): Get Docker for Mac (stable)
  2. Actually there are two approach to run docker on your Mac. The 1st one is to utilise Docker for Mac (which we will do this), and the second one is to utilise Docker Toolbox. The difference is in Docker for Mac approach, we will utilise HyperKit as lightweight virtualisation technology to run the container. Docker Toolbox will utilise Virtualbox as the virtualisation technology.
  3. Actually you can run both Docker for Mac and Docker Toolbox approach at the same time in your MacOS, but there are several things that you need to do, such as create different environment (set and unset command). I will not elaborate that in this post.
  4. Assume that your machine is empty for Docker engine.Docker Tutorial
  5. Install and Run Docker. Double click Docker.img that you have downloaded earlier to start the installation.screen-shot-2016-10-31-at-15-29-46
  6. Check Docker version that is now running on your Mac after the installation is completed.screen-shot-2016-10-31-at-15-34-06
  7. Let’s start with your basic application. Let’s do nginx web server using docker.
  8. Check your http://localhost first to check the status.screen-shot-2016-10-31-at-15-54-28
  9. Basically, docker will try to run the source of your application locally. But if docker can not find it, then it will search through the public repository (default configuration is docker hub).screen-shot-2016-10-31-at-15-55-21
  10. Check your http://localhost now to check the status.screen-shot-2016-10-31-at-15-56-03
  11.  Check the status of the docker using  docker ps command. If you want to stop the web server, do docker stop webserver and start the web by docker start webserver
  12. If you want to stop and remove the container, use the command docker rm -f webserver. If you want to delete the local images do the command docker rmi nginx. But before that, you can list the local images using docker images.screen-shot-2016-10-31-at-16-00-14
  13. If you want to use another docker repository other than or do a file sharing from your Mac to your docker engine, you can also configure that in the Docker for Mac menu.screen-shot-2016-10-31-at-16-17-40

Let’s Continue with the second Chapter: BOARDING YOUR APPS 

For this example we will utilise Docker Compose to run WordPress in an isolated environment. Compose is a docker tool for running multi containers environment. We will create a compose file, and then execute the YAML file using docker-compose command.

  1. Create a directory for the project in your Mac.
  2. screen-shot-2016-11-01-at-18-51-10Create a docker compose file. This will include wordpress and mysql to create a simple blog website.screen-shot-2016-11-01-at-18-53-49
  3. Now, build the project using the command $ docker-compose up -d
  4. screen-shot-2016-11-01-at-18-56-35Check whether the images already installed and run. Using docker images and docker ps command.
  5. screen-shot-2016-11-01-at-19-02-49Finally, test to open the wordpress in your browser. Because we put the configuration in port 8000, then we will open http://localhost:8000
  6. Do the installations of wordpress using the UI wizard, then finally open the created site.screen-shot-2016-11-01-at-19-01-32


Kind Regards,
Doddi Priyambodo

VMware Photon Platform or vSphere Integrated Container

Cloud Native Applications implementation using container technology is hardly to ignore if you want to keep up with this culture of agile and fast innovations. VMware have two approaches to support for this initiative. Either to use vSphere Integrated Container approach or VMware Photon Platform approach.

So, what are the differences? In Summary:

  • If you want to run both containerized and traditional workloads in production side by side on your existing infrastructure, VIC is the ideal choice. VIC extends all the enterprise capabilities of vSphere without requiring additional investment in retooling or re-architecting your existing infrastructure.
  • If you are looking at building an on-prem, green field infrastructure stack for only running containerized workloads, and also would like a highly available and scalable control plane, an API-driven, automated DevOps environment, plus multi-tenancy for creation and isolation resources, Photon Platform is the way to go.

In this couple of weeks, I will elaborate more about this cloud native applications. Please wait for my next posts.

So, these are the plan:
1. Run Docker Apps in the laptop (for my case, I will use Mac)
We will utilise: Mac OS, Docker, Swarm.
2. Run Docker Apps in vSphere Integrated Container
We will utilise: VMware vSphere, vCenter, Photon OS, Harbor, Admiral.
3. Run Docker Apps in VMware Photon Platform
We will utilise: VMware vSphere, Photon Controller, Photon OS, Kubernetes


Kind Regards,
Doddi Priyambodo